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Abstract— To address the problem of miss- and false-
detection during quality inspection of lithium-ion battery
cover screen printing (LBCSP), we propose a hybrid im-
age registration method using a point-based feature ex-
traction algorithm and nonlinear-scale space construction.
Our proposed method integrates the AKAZE algorithm with
the BEBLID descriptor, and is therefore named A-BEBLID.
Facing the challenge of the inevitable offset caused by
machine vibration during production, we combine a nonlin-
ear diffusion filter with a local image descriptor to extract
features from images, and then use the GMS algorithm to
remove the wrong matching pairs. We tested the method
on a dataset we created using images taken from actual
lithium-ion battery production lines, named LBCSP. We also
evaluated the method on the public HPatches dataset. The
average precision achieved by A-BEBLID on the LBCSP
dataset is 89% (threshold: 2 pixels), with a localization error
of 1.11 pixels, while on the HPatches dataset, the average
precision is 73% (threshold: 2 pixels), with a localization
error of 1.52 pixels. Comprehensive experimental results
also showed that the proposed A-BEBLID can outperform
other approaches being compared to. The method can be
further applied to other industry scenarios with similar
image registration requirements.

Index Terms— A-BEBLID, AKAZE, BEBLID, GMS, im-
age registration, lithium-ion battery cover screen printing,
point-based features

I. INTRODUCTION

SCREEN printing methods are commonly used for the
printing of lithium-ion battery product covers. As part of

quality control, manufacturers need to monitor the quality of
screen printing on the production lines in real-time. During
production, a slight vibration may cause the printed image to
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rotate and/or shift, making it more difficult for the computer
to locate the desired features, such as the ink blocking area,
resulting in miss- and false- detection.

Image registration is a technique of matching two or more
images of the same object taken in different environments, i.e.,
from different angles, by different cameras, at different times,
etc [1]. The task is to identify and align a big amount of visual
information from different sensors, and produce more visual
representations for downstream tasks [2]. It can be applied
to image enhancing, image mosaic, object tracking, image
segmentation, etc. Numerous studies have been conducted
in the area of image registration, and the approaches in-
clude intensity-based, feature-based, and deep learning-based
methods. Although deep learning has been applied to various
computer vision tasks [3], due to its poor interpretability
and high computational cost, it is a less-desired approach for
lithium-ion battery cover screen printing (LBCSP).

The intensity-based methods use a series of transformation
matrices to align two images by warping the tested image
to the coordinates of the reference image [4]. Feature-based
methods, on the other hand, search for specific information
such as points, lines, contours and polygon structures that
would serve as key factors in determining the similarity of
the compared images. Point-based features, easy to obtain and
less affected by noise [5], provide an effective solution for
applications such as the screen printing of lithium-ion battery
covers. Our work here therefore focuses on the feature-based
methods.

In 1977, Moravec [6] proposed a method for point-based
feature extraction, and his method has piqued the interest
of researchers, academics, and industry leaders since then.
Harris et al. [7] optimized the method using a local auto-
correlation function and demonstrated robust performance
against rotation change and noise interference. While human
eyes can identify an object regardless of its size, computers
have been struggling to achieve the same ability. In 1999,
Lowe [8] made a breakthrough when he proposed the object
recognition system. In 2004, he improved the system and
renamed it scale-invariant feature transform (SIFT) [9]. In
2008, Bay et al. [10] proposed the speeded up robust features
(SURF) method, which improved the algorithm with higher
execution efficiency using a Hessian matrix-based detector and
a distribution-based descriptor. Rublee et al. proposed a binary
descriptor based on features based on the accelerated segment
test (FAST) [11] and binary robust independent elementary
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features (BRIEF) [12]. The method was named ORB [13].
Alcantarilla et al. proposed the KAZE algorithm (KAZE

means wind in Japanese) that detects and describes image fea-
tures through a nonlinear diffusion filter [14]. To speed up the
method, its improved version, accelerated-KAZE (AKAZE),
embedded a fast explicit diffusion (FED) in the framework
[15]. Their experimental results showed that AKAZE was
faster not only than KAZE, but also SURF and SIFT. In 2020,
Suárez et al. adopted AdaBoost with a weak-learner training
scheme to generate local descriptions, and they proposed the
boosted efficient binary local image descriptor (BEBLID).
Their experimental results demonstrated that the BEBLID has
higher computing efficiency than ORB and an accuracy close
to SIFT [16].

In this paper, we propose an A-BEBLID framework that
combines the AKAZE algorithm and the BEBLID descriptor
for image registration. To increase the robustness against rota-
tion and position shifting, we first use the AKAZE algorithm
to perform nonlinear diffusion filtering, and thus construct a
nonlinear-scale space. Then, we adopt the BEBLID descriptor
to improve efficiency. Afterward, we remove the incorrect
matching pairs using the Grid-based Motion Statistics (GMS)
algorithm [17]. Our proposed method was tested on the
HPatches public dataset [18] as well as a dataset we created
using images taken from actual LBCSP production lines. This
LBCSP dataset consists of 5 folders: scale, rotation, shift,
affine, and features. The features were saved as .txt and
.csv files of features extracted using six different methods:
SIFT, SURF, ORB, AKAZE, ORB+BEBLID, and A-BEBLID.
An overview of the dataset structure is shown in Fig. 1.
Experimental results confirmed that the proposed A-BEBLID
can outperform other methods under comparison.

The rest of this paper is organized as follows. Section II re-
views related work on image registration methods. Section III
describes the AKAZE algorithm and the BEBLID descriptor,
as well as the framework of the proposed method. Section IV
presents the experiment setup and evaluation indexes. Section
V discusses the experimental results and findings. Finally,
conclusions are drawn in Section VI.
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Fig. 1: Overview of the LBCSP dataset. There are 1568
images in the dataset plus four template images. For the first
template, there are 32 images classified into four groups: scale,
rotation, shift, and affine, a total of 128 images. For templates
2 – 4, each has 120 images classified into four groups.

II. RELATED WORK

Image registration is a notable research area in computer vi-
sion that can be employed in various automatic image analysis
tasks [19]. Many attempts have been made by researchers in
the field. Achieving an application-suitable balance between
accuracy and efficiency has been challenging [20]. In this
section, we briefly review previous work related to the applica-
tions of printing defect inspection, for which image registration
is a critical step.

Chen et al. developed a printed image registration approach
that can find feature regions in shapes like quasi-rectangular
and oval. This approach, however, can only be used on
perfect shapes [21]. Zhou et al. adopted an image registration
technique to inspect geometric and color flaws in a can printing
system. Geometric flaws were detected using the structural
similarity index measure (SSIM) technique, whereas color
defects were determined by the CIEDE2000 color formula.
The approach is capable of detecting scratches, stains, blur,
lines and color variation faults. Running speed, however, was
not considered in the study [22]. Hu et al. used a multi-class
support vector machine for printing defect inspection. The
vector, which consists of geometric defect features and form
defect features, was used as a descriptor. However, nonlinear-
scale space was excluded from the study [23]. Liu et al.
proposed a multi-edge feature fusion approach to detect faults
in sheet-fed printing systems. They created a dataset with more
translation, deformation, and uneven illumination variations
for the research. For registration, they used SIFT and multi-
edge feature fusion methods, yielding a mean average preci-
sion (mAP) of 92.65% and a recall of 96.29%. However, the
computation speed was not mentioned in the study [24]. Dong
et al. used the normalized cross-correlation (NCC) function to
discover edge and roundness incompleteness defects for screen
printing image defect detection, and it achieved an accuracy
of 94.6% [25].

This study adds to the existing literature by:
1) creating the LBCSP dataset using images taken from

actual lithium-ion battery production lines;
2) implementing the BEBLID descriptor on the AKAZE

algorithm to obtain a higher speed;
3) evaluating the performance of six methods, namely

SIFT, SURF, ORB, AKAZE, ORB+BEBLID, and A-
BEBLID on the LBCSP and HPatches datasets 1;

4) testing the methods on images from actual industry
production lines, thereby offering a feasible inspection
approach for quality check of similar industrial scenar-
ios.

III. ALGORITHMS

Here, we first introduce the AKAZE algorithm and the BE-
BLID descriptor, then describe the framework of the proposed
method.

A. AKAZE
The AKAZE algorithm was proposed in 2011 by Alcan-

tarilla et al. This method uses a nonlinear diffusion approach

1https://github.com/A-BEBLID/LBCSP

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TII.2023.3240875

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on February 01,2023 at 07:53:00 UTC from IEEE Xplore.  Restrictions apply. 



A-BEBLID: A HYBRID IMAGE REGISTRATION METHOD FOR LITHIUM-ION BATTERY COVER SCREEN PRINTING 3

to track the luminance changing of the image. The algorithm
is usually described by nonlinear partial differential equations
and uses the scale parameter as the divergence factor to control
the luminance diffusion of the image, as shown in (1):

∂H

∂t
= Div(c(x, y, t) · ∇H), (1)

where Div denotes the divergence operation, ∇ represents
the gradient, c is the conductivity function, and t is the scale
parameter. By specifying a suitable conductivity function, we
can make the diffusion adaptive to the local structure.

In 1990, Perona and Malik introduced nonlinear diffusion
filtering into the field of computer vision [26]. They made the
function c dependent on the gradient magnitude, to reduce the
diffusion near edges and to avoid smoothing across borders.
The definition of the function c is shown in (2):

c(x, y, t) = g(|∇Hσ(x, y, t)|), (2)

where ∇Hσ denotes the gradient of the Gaussian filtered
image. The conduction kernel function g is given by (3):

g =
1

1 + |(∇Hσ)|2/K2
, (3)

where K is the contrast index that changes the level of
diffusion.

The nonlinear-scale space of image H can be obtained
through (4):

Hi+1,j+1 = (I+τjA(Hi))Hi+1,j , j = 0, 1, 2, ..., n−1, (4)

where I is the identity matrix, and A(Hi) is the conductivity
matrix of the image Hi.

AKAZE algorithm uses the fast explicit diffusion (FED)
scheme for faster building by varying the step size τj , calcu-
lated by (5):

τj =
τmax

2cos2(π(2j + 1)/(4n+ 2))
, (5)

where τmax is the maximum step when diffusion reaches
stability. Similar to SIFT, the scale space in the AKAZE
algorithm is discretized in logarithmic steps, in a series of
O octaves and S sub-levels, each marked by a discrete octave
index o, and a sub-level index s, as shown in (6):

σi(o, s) = σ02
(o+ s

S ),

o ∈ [0, 1, ..., O − 1], i ∈ [0, 1, ..., N ], s ∈ [0, 1, ..., S − 1],
(6)

where i, o, and s represent the index of the image number,
octave, and sub-level respectively, σ0 denotes the base level,
and N is the total number of filtered images.

The relation function of the scale parameters σi and the
diffusion time ti is shown in (7):

ti =
σ2
i

2
. (7)

The feature detection process begins with a search for
the local maximum value of the Hessian determinant after

the normalization of different scales. The calculation of the
Hessian matrix is shown in (8):

DHessian = σ2(DxxDyy −DxyDxy), (8)

where Dxx and Dyy are the second order derivative of the
horizontal and vertical directions respectively, and Dxy is the
second order cross derivative.

The maxima of the level is the point whose determinant is
higher than all of its neighbors.

B. BEBLID
In 2020, Suárez et al. introduced BEBLID based on their

previous descriptor BELID, in which the BoostedSSC [27]
was adopted to select features from descriptions. AdaBoost
was implemented to train the descriptor with an unbalanced
dataset from the Liberty statue patches to address the heavily
asymmetric image matching issue. To reduce similarity loss,
all weak learners are given the same weight [16].

Let (xi, yi) be the i−th pair of image patches, li =
1 indicates that both patches have the same salient image
structure, whereas li = −1 indicates they don’t. Subsequently,
a training dataset can be described as {xi, yi, li}Ni=1.

The loss function is defined in (9):

ΓBEBLID =

N∑
i=1

exp(−γli

K∑
k=1

hk(xi)hk(yi)), (9)

where γ is the learning rate that determines the training
speed and the number of selected weak learners, hk denotes
the k−th weak learner that depends on a feature extraction
function: f(x;T ).

With a given f and T , the weak learner can then be defined
as:

h(x) =

{
+1 f(x) ≤ T
−1 f(x) > T

. (10)

The image patch can be described by D(x) based on (10).
To normalize the output, the output −1 and +1 are converted
to 0 and 1 respectively, as shown in Fig. 2.
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Fig. 2: BEBLID descriptor extraction workflow.

The definition of f(x) is given by (11):

f(x; p1, p2, s) =
1

s2
[

∑
q∈R(p1,s)

I(q)−
∑

r∈R(p2,s)

I(r)], (11)

where I(q) and I(r) are the grey value of the pixel q and
pixel r respectively. The R(p, s) is the square box centered at
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pixel p with size s. Therefore, f(x) is the difference between
the mean grey values of the pixels in the blue and red boxes
in Fig. 2, which are represented by R(p1, s) and R(p2, s) in
(11) respectively.

The algorithm takes the outputs of f(x) at each pair of
patches as input, then finds the threshold that minimizes the
weighted classification error.

C. The framework of the proposed method
The method takes advantage of the non-linear space created

by the AKAZE algorithm in the initial feature detection step,
the features of both images, i.e., the template image and
the production line image are located through extreme point
detection. These features are then fed to the BEBLID for
description using the binary local image descriptor, as shown
in Fig. 3.

Template image Real image

Constructing the non-linear space

Extreme point detection

Positioning 

Patch selection of 
the template image

Patch selection of 
the real image

Feature extraction

Extreme point detection

Obtaining the threshold
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BEBLID descriptor of 
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BEBLID descriptor of 
the real image

AKAZE feature detection BEBLID feature descriptor

  
Feature points

of the 
template image

  
Feature points

of the 
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Fig. 3: The framework of A-BEBLID.

IV. EXPERIMENT SETUPS AND EVALUATION INDEXES

Here, we compare the performance of the proposed method
with five other methods by testing them on the LBCSP and
Hpatches datasets. We first compare the feature point repeata-
bility of the six methods, and then the matching precision,
runtime and localization error of these six methods combined
with GMS. At last, we input all the above results to the
weighted entropy evaluation index (WEEI) formula to evaluate
the overall performance.

A. Experimental settings and datasets
The computation environment involved an Intel(R)

Core(TM) i5-12600KF CPU with 16G memory and 64-bit
Windows11 OS; coding was done using Python 3.8 in
Pycharm development tools and the Anaconda integration
toolkit. Fig. 4 shows a set of LBCSP images: template, scale,
rotation, shift, and affine, where (a) is a template image
converted from a standard PDF file. The dataset contains
four groups of images to simulate four types of variation in
real-world scenarios.

The proposed method is the result of our effort in finding an
effective way for the LBCSP image registration. To that end,

when testing the method on the public dataset HPatches, we
chose the ones that are mostly similar to our created dataset in
terms of variation. Given that the LBCSP images are taken in
a manufacturing workshop with a stable lighting environment,
we chose images with viewing angle changes, specifically:
the number 2 – 5 images of v apprentices, v azzola, v bees,
v bird, v circus, v courses, v sunseason, and v vitro, totally 32
to test our method on. This is because the angle changes lead
to rotation, shifting, and size change; these are the variations
we need to consider in the production lines of this research.

(a) (b) (c) (d) (e)

Fig. 4: A set of LBCSP images: (a) template image; (b) scale,
the scale range is within [0.5, 1.5] times of the template image;
(c) rotation, the rotation range is within [-5°, 5°]; (d) shift, the
shift range is within [0.5, 3] pixels; (e) affine, images contain
2 or 3 of the above stated changes.

B. Evaluation metrics

We evaluate the performance using four metrics: runtime,
repeatability, matching precision, localization error, and a
comprehensive index WEEI.

1) Runtime, given that the quality detection of lithium-ion
battery screen printing cover is conducted on the production
lines in real-time, it is necessary to test the computing speed
of the algorithm. Therefore, runtime is taken as a performance
index in this study.

2) Repeatability shows the geometrical stability of the
feature points between two images of the same object taken
under different conditions [28]. The formula of repeatability
rate is shown in (12):

R =
Count[Dis

<ϵ
(mp, np)]

Count[min(mp, np)]
, (12)

where mp and np are the feature point sets of the template
image and the tested real image, respectively. Dis() defines
the set of the point pairs (mp,np) whose Euclidean distance
is less than the threshold ϵ, and here, ϵ is set to 1.5.

3) Matching precision is defined as the ratio of the number
of correct matching pairs to the number of all matching pairs.
The formula of matching precision is shown in (13):

P =
Nc

Nr
, (13)

where Nc is the amount of correctly matched point pairs of
the two images, and Nr is the amount of all matched pairs.
The matching precision of a single image is of little reference
significance. Therefore, we calculate the mean value of the
precision of all the images in the dataset for evaluation.
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4) Localization error is a statistical result, it reflects the dif-
ference between the feature point coordinates of the template
image and the tested image. The formula for localization error
is shown in (14):

El =

√√√√ 1

Nc

Nc∑
i=1

[(xi
o − xi

t)
2 + (yio − yit)

2], (14)

where (xi
o, y

i
o) and (xi

t, y
i
t) are the reference coordinates and

transformed coordinates, respectively.
5) WEEI is the weighted entropy evaluation index, used

here for an objective overall evaluation of the six methods. In
different application scenarios, the weights should be different
depending on the application needs. However, to demonstrate
the generalization potential of a method and prevent human
judgement from influencing the weight of indexes, WEEI is
an objective method when deciding the index weights [29].
The greater the dispersion degree of the index, the greater the
impact (i.e. weight) of the index on the overall evaluation.
The extreme scenario is where all of an index’s values tend
to be highly similar or even equal, the index would be of
little or no help for assessment. The weight of each index
can be calculated using information entropy [30]. The six
(each marked as the i−th) methods, are taken as samples
to determine the weight vector of the four (each marked as
the j−th) indexes. The evaluation index matrix is defined as
X6×4 = [xij ], where xij denotes the value of the j−th index
of the i−th method.

Next, the matrix X6×4 is normalized using the following
formula:

yij =
max(xj)− xij

max(xj)−min(xj)
, (15)

where yij is the normalized value, max(xj) and min(xj) are
the highest and lowest values of the j−th index among the
six methods, respectively.

This formula applies to the indexes whose lower values
indicate better performance. Indexes such as repeatability
and matching precision, whose higher values indicate better
performance are pre-processed by the formula xij = 1 − xij

before being fed to (15).
With the j−th index, the proportion of the i−th method is

defined as pij , as shown in (16):

pij = yij

/ 6∑
i=1

yij . (16)

Next, we calculate the entropy of the j−th index using (17):

ej =
−1

ln 6

6∑
i=1

pij ln pij , (17)

where ej is the entropy of the j−th index, whose lower value
indicates a higher amount of information. For this reason, we
introduce dj = 1− ej , whose higher value indicates a higher
amount of information.

Finally, the weight of each index is calculated by (18).

wj = dj

/ 4∑
i=1

dj , (18)

where wj is the weight of each index.
Based on (18), the WEEI of each method is given by (19):

WEEIi =

4∑
j=1

wjxij . (19)

V. RESULTS AND DISCUSSION

Here, we report on the experiment outcomes, analyze the
statistical data, and discuss the results based on the abovemen-
tioned four evaluation indexes: runtime, repeatability, match-
ing precision, localization error, and a comprehensive index
WEEI.

A. Comparison of feature point repeatability

Fig. 5 shows the feature extraction results of the six meth-
ods. We observe clusters with SURF and AKAZE, especially
with SURF. The distribution of point features extracted by
ORB+BEBLID and A-BEBLID is relatively even and distin-
guishable. The total amount of feature points extracted by
SIFT and SURF is lower than the others. A-BEBLID captured
more feature points in groups Scale, Rotation and Affine
compared to ORB+BEBLID.

SIFT

SURF

ORB

AKAZE

ORB+

BEBLID

A-BEBLID

Scale Rotation Shift Affine

Fig. 5: Feature extraction results of the six methods.

As shown in Fig. 6, the repeatability of A-BEBLID and
AKAZE is 64% and 65%, respectively. Following that is the
ORB+BEBLID: 42%, and ORB: 38%; whereas SURF is 28%
and SIFT is 27%, the lowest.
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Fig. 6: Feature point repeatability of the six methods.

B. Comparison of matching precision

To improve matching precision, we applied GMS to remove
the wrong matching pairs. The matching results on LSCSP and
HPatches are shown in Fig. 7 and Fig. 8, respectively.

After applying GMS, we use the homography matrix to
align the real image with the template image through the trans-
formation matrix. We use the homography matrix obtained
using the RANSAC algorithm by selecting the optimal four
points of the two images. Then, we calculate the distance
between the transformed coordinates of the real image and the
coordinates of the template image, and use it as a threshold
to calculate matching precision.

Fig. 9 and Fig. 10 show the average precision tested on the
LBCSP and HPatches images, respectively. On the LBCSP
dataset, the average precision of the proposed method is the
highest when the threshold is ≤ 4 pixels. On the HPatches,
the average precision of the proposed method is the highest
when the threshold is 2 pixels. The ORB+BEBLID method is
slightly higher than A-BEBLID in threshold range (2, 6].

SIFT

SURF

ORB

AKAZE

ORB+

BEBLID

A-BEBLID

Scale Rotation Shift Affine

Fig. 7: Matching results of the six methods on LBCSP.

A-BEBLID

ORB SURF SIFT

ORB +BEBLID AKAZE

Fig. 8: Matching results of the six methods on HPatches.

Fig. 9: Average precision of the six methods, tested on the
LBCSP images.

Fig. 10: Average precision of the six methods, tested on the
HPatches images.

C. Comparison of runtime
The recorded runtime is the mean value of 392 runs in

each group. The data is organized in Table I. In terms
of average runtime, the ”ORB+GMS” method obtained the
fastest (highlighted in bold) of 0.262s, because of ORB’s
computational efficiency. Whereas ”SURF+GMS” runtime is
the slowest, 1.132s. The proposed method obtained a 0.348s
(highlighted in Italian), ranks third.

D. Comparison of localization error
Fig. 11 shows the localization error of the six methods

combined with GMS. The average localization error of SIFT
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TABLE I: Runtime of the six methods combined with the GMS
algorithm (s), the best result is highlighted in bold.

SIFT SURF ORB AKAZE ORB+BEBLID A-BEBLID

+GMS +GMS +GMS +GMS +GMS +GMS

Scale 1.113 1.120 0.261 0.487 0.276 0.350
SD 0.610 0.578 0.031 0.254 0.028 0.179
Rotation 1.111 1.135 0.261 0.483 0.276 0.347
SD 0.607 0.587 0.032 0.252 0.027 0.177
Shift 1.110 1.165 0.262 0.489 0.276 0.352
SD 0.620 0.602 0.031 0.256 0.027 0.180
Affine 1.068 1.106 0.262 0.477 0.276 0.343
SD 0.566 0.569 0.032 0.247 0.029 0.173
Average 1.101 1.132 0.262 0.484 0.276 0.348

*Runtime is the mean value of 392 executions of each group.

is 1.07 pixels, the lowest of all six methods, followed by the
A-BEBLID of 1.11 pixels. Whereas ORB shows the highest
of 1.61 pixels, the ORB+BEBLID method shows the second
highest of 1.52 pixels.

Fig. 11: Localization error of the six methods.

E. WEEI
The WEEI considers all the abovementioned four indexes:

runtime, repeatability, matching precision, and localization
error, and computes their weighted sum to evaluate their
overall performance.

Table II and IV show the weight of each index calculated
on LBCSP and HPatches, respectively. Table III and V show
the overall evaluation result of the six methods tested on
LBCSP and HPatches, respectively. A lower comprehensive
score indicates better overall evaluation, as the negative index
formula was used. The WEEI result verifies the effectiveness
of the proposed method in scenarios where these four indexes
are all taken into consideration.

TABLE II: Weight of each index on LBCSP.

Runtime Repeatability Matching precision Localization error

Weight 0.272 0.347 0.146 0.235

VI. CONCLUSION

During printing defects inspection, manufacturers face the
challenges of image rotation and/or shifting caused by machine

TABLE III: WEEI of the six image registration methods on
LBCSP.

SIFT SURF ORB AKAZE ORB+BEBLID A-BEBLID

GMS +GMS +GMS +GMS +GMS +GMS

WEEI 0.818 0.907 0.672 0.540 0.641 0.488

TABLE IV: Weight of each index on HPatches.

Runtime Repeatability Matching precision Localization error

Weight 0.233 0.300 0.214 0.253

TABLE V: WEEI of the six image registration methods on
HPatches.

SIFT SURF ORB AKAZE ORB+BEBLID A-BEBLID

GMS +GMS +GMS +GMS +GMS +GMS

WEEI 0.837 0.922 0.697 0.671 0.647 0.625

vibration, which makes it more difficult to locate the desired
features, resulting in miss-detection and false-detection. In
this study, we collected 1568 images from the lithium-ion
battery production lines and constructed a dataset for image
registration research. After applying six different methods on
the dataset and the public dataset Hpatches, we evaluated
the performance of these methods using feature extraction
repeatability, matching precision, runtime, and localization
error.

In terms of repeatability, the proposed method A-BEBLID
and AKAZE are the highest, followed by the ORB and
ORB+BEBLID. SURF and SIFT are the lowest.

In terms of matching precision, the average precision of
the proposed method is the highest when the threshold is ≤ 4
pixels on the LBCSP dataset. While on HPatches, the proposed
method is the highest when the threshold is 2 pixels. The
ORB+BEBLID method is slightly higher than A-BEBLID in
pixel range (2, 6].

In terms of runtime, ORB is the fastest in each test. This
shows the superiority of ORB’s computation efficiency. The
proposed method is 0.086s slower than ORB, and 0.136s faster
than AKAZE, while both SIFT and SURF took longer than
1.1s.

In terms of localization error, SIFT is the lowest at 1.07
pixels and the proposed method is 1.11 pixels, which ranks
second.

Based on these results, we can see that the proposed method
achieved the highest precision in our desired threshold range,
and high rankings in the other three indexes. So we had
a hunch that the hybrid method of AKAZE nonlinear-scale
space structure and BEBLID binary descriptor is a suitable
solution for our task. The WEEI overall evaluation score
verified this hunch. By employing a nonlinear-scale space
structure, the method improves the system’s resistance to
size change, rotation, and location shifting, which makes it
suitable for the printing quality check of lithium-ion battery
production lines. By adopting the BEBLID descriptor, the
method increases the system’s speed. It is worth noting that for
the final step, we implemented the GMS algorithm to all six
methods for matching pair selection to increase accuracy. The
precision, runtime, and localization error are calculated after
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feeding the matching results to GMS. With the rapid growth
of computation power these days, accuracy will be a more
important index in the industrial production field compared to
runtime, and the evaluation balance will shift toward accuracy
as the improvement of computation power naturally leads to
an increase in speed.
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